Description

Electronic circuit protector type ESX10-T is designed to ensure selective disconnection of DC 24 V load systems.

DC 24 V power supplies, which are widely used in industry today, will shut down the output in the event of an overload with the result that one faulty load in the system can lead to complete disconnection of all loads. As well as an unidentified failure this also means stoppage of the whole system.
Through selective disconnection the ESX10-T responds much faster to overload or short circuit conditions than the switch-mode power supply. This is achieved by active current limitation. The ESX10-T limits the highest possible current to 1.3 to 1.8 times the selected rated current of the circuit protector. Thus it is possible to switch on capacitive loads of up to $\mathbf{7 5 , 0 0 0} \mu \mathrm{F}$, but they are disconnected only in the event of an overload or short circuit.
For optimal alignment with the characteristics of the application the current rating of the ESX10-T can be selected in fixed values from 0.5 A... 12 A or in adjustable ratings e.g. [2 A/4 A/6 A]. Failure and status indication are provided by a multicolour LED and an integral short-circuit-proof status output or a potential-free signal contact. Remote operation is possible by means of a remote reset signal or a remote ON/OFF control signal. The manual ON/OFF button allows separate actuation of individual load circuits.

The ESX10-T, with a width of only 12.5 mm , can be snapped onto symmetrical rails ensuring ease of installation and saving space in control cabinets.
Upon detection of overload or short circuit in the load circuit, the MOSFET of the load output will be blocked to interrupt the current flow. The load circuit can be re-activated via the remote electronic reset input, control input or manually by means of the ON/OFF button.

US patent number: US 6,490,141 B2
US patent number: US 8,237,311 B2

Features

- Selective load protection, electronic trip characteristics.
- Suitable for all kinds of loads (DC 24 V motors upon request)
- Active current limitation for safe connection of capacitive loads up to $75,000 \mu \mathrm{~F}$ and on overload/short circuit.
- ESX10-TA/-TB:

Current ratings $0.5 \mathrm{~A} . . .12 \mathrm{~A}$

ESX10-TD:

adjustable ratings [0.5 A/1 A/2 A], [2 A/3 A/4 A], [2 A/4 A/6 A] and [6 A/8 A/10 A]

- Reliable overload disconnection with $1.1 \times \mathrm{I}_{\mathrm{N}}$ plus, even with long load lines or small cable cross sections (see table 3).
- Manual ON/OFF button (S1).
- Control input IN+ for remote ON/OFF signal (option).
- Electronic reset input RE (option).
- Clear status and failure indication through LED, status output SF or Si contact F.
- Integral fail-safe element adjusted to current rating.
- Width per unit only 12.5 mm .
- Rail mounting
- Ease of wiring through busbar LINE+ and 0 V as well as signal bars and bridges.
- Additional versions with ATEX approval available.

Marking: © $\underbrace{}_{x}$ II 3G Ex nA IIB T4 Gc X
ESX10-TA-...-E and ESX10-TB-...E
Please observe separate operating instructions:

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

Operating data

Operating voltage U_{S}	DC 24 V (18... 32 V)
Current rating I_{N}	fixed current ratings: Type ESX10-TA-... and -TB-...: $0.5,1$ A , $2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 6 \mathrm{~A}, 8 \mathrm{~A}, 10 \mathrm{~A}, 12 \mathrm{~A}$ adjustable ratings: Type ESX10-TD-...: [0.5 A/1 A/2 A], [2 A/4 A/6 A], [6 A/8 A/10 A] Type ESX10-TD-101-...: [2 A/3 A/4 A]
Closed current I_{0}	ON condition: typically $20 \ldots 30 \mathrm{~mA}$ depending on signal output
Status indication by means of	- multicolour LED: Green: - unit is ON, power-MOSFET is switched on - status output SF ON, supplies + DC 24 V

Orange:

- in the event of overload or short circuit until electronic disconnection Red:
- unit electronically disconnected
- load circuit/Power-MOSFET OFF OFF:
- manually switched off (S1 = OFF)
or device is dead
- undervoltage ($\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$)
- after switch-on till the end of the delay period
- status output SF (option)
- potential-free signal contact F (option)

ON/OFF/ condition of switch S1

Load circuit	
Load output	Power-MOSFET switching output (high side switch)
Overload disconnection	typically $1.1 \times \mathrm{I}_{\mathrm{N}}\left(1.05 \ldots 1.35 \times \mathrm{I}_{\mathrm{N}}\right)$
Short-circuit current I_{K}	Active current limitation with $I_{\text {Limit }}=$ typically $1.8 / 1.5 / 1.4 / 4.3 \times I_{N}$, $I_{\text {Limit }}$ depending on I_{N} (typical $\mathrm{L}_{\text {Limit }}$ - values see table 1)
Trip characteristic	active current limitation (see table 1)
Trip thresholds/trip times ($\mathrm{t}_{1}, \mathrm{t}_{2}$) at overcurrent (Limit See table 1)	1. threshold: at $\mathrm{I}_{\text {oad }}>$ typically $1.1 \times \mathrm{I}_{\mathrm{N}} \ldots \mathrm{I}_{\text {Limit }}$: $\mathrm{t}_{1}=$ typically 3 s . 2. threshold: at $I_{\text {load }}=I_{\text {Limit }}$: $\mathrm{t}_{2}=$ typically $100 \mathrm{~ms} . . .3 \mathrm{~s}$.
Temperature disconnection	internal temperature monitoring with electronic disconnection
Low voltage monitoring load output	with hysteresis, no reset required load "OFF" at $\mathrm{U}_{\mathrm{S}}<8 \mathrm{~V}$

Technical data $\left(T_{\text {ambient }}=25^{\circ} \mathrm{C}\right.$, operating voltage $\mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$

Starting delay $\mathrm{t}_{\text {start }}$	typically 0.5 sec after every switch-on and after applying U_{S}
Disconnection of load circuit electronic disconnection	
Free-wheeling circuit	external free-wheeling diode recommended with inductive load
Several load outputs must not be connected in parallel	
Status output SF	ESX10-T.-114/-124/
Electrical data	plus-switching signal output, connects U_{S} to terminal 12 of module 17plus nominal data: DC $24 \mathrm{~V} /$ max. 0.2 A (short circuit proof) status output is internally connected to GND with a 10 kOhm resistor
Status OUT	ESX10-TB-114/-124 (signal status OUT), at $\mathrm{U}_{\mathrm{S}}=+24 \mathrm{~V}$ $+24 \mathrm{~V}=\mathrm{S} 1$ is ON , load output connected through $\mathrm{OV}=\mathrm{S} 1$ is ON , load output blocked and/or switch S1 is OFF red LED lighted
OFF condition	0 V level at status output when: switch S 1 is in ON position, but device is still in switch-on delay switch S1 is OFF, or control signal OFF, device is switched off no operating voltage U_{S}
Signal output F	ESX10-T.-101/-102
Electrical data	potential-free signal contact max. DC $30 \mathrm{~V} / 0.5 \mathrm{~A}$, min. $10 \mathrm{~V} / 10 \mathrm{~mA}$
ON condition LED green	voltage U_{S} applied, switch $S 1$ is in ON position no overload, no short circuit
OFF condition LED off	device switched off (switch S1 is in OFF position) no voltage U_{S} applied

Fault condition LED orange overload condition $>1.1 \times I_{N}$ up to electronic disconnection
Fault condition LED red electronic disconnection upon overload or short circuit
ESX10-TB-101 single signal, make contact contact SC/SO-SI open
ESX10-TB-102 single signal, break contact contact SC/SO-SI closed
Fault signal output fault conditions:

- no operating voltage U_{S}
- ON/OFF switch S1 is in OFF position
- red LED lighted (electronic disconnection)

Reset input RE	ESX10-T.-124/-127
Electrical data	$\begin{aligned} & \text { voltage: max. + DC } 32 \mathrm{~V} \\ & \text { high }>\mathrm{DC} 8 \mathrm{~V} \leq \mathrm{DC} 32 \mathrm{~V} \\ & \text { low } \leq \mathrm{DC} 3 \mathrm{~V}>0 \mathrm{~V} \end{aligned}$ power consumption typically 2.6 mA $\text { (+DC } 24 \mathrm{~V} \text {) }$ min. pulse duration typically 10 ms
Reset signal RE (terminal 22)	The electronically blocked ESX10-TB-124/-127 may remotely be reset via an external momentary switch due to the falling edge of $a+24 \mathrm{~V}$ pulse. A common reset signal can be applied to several devices simultaneously. Switched on devices remain unaffected.
Control input IN+	ESX10-T.-114
Electrical data Control signal IN+ (terminal 21)	see reset input RE +24 V level (HIGH): device will be switched on by a remote ON/OFF signal 0 V level (LOW): device will be switched off by a remote ON/OFF signal
Switch S1 ON/OFF	unit can only be switched on with S1 if a HIGH level is applied to IN+

Technical data ($\mathrm{T}_{\text {ambient }}=25^{\circ} \mathrm{C}$, operating voltage $\mathrm{US}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}$)

LED display	ON: LED green OFF: LED red	
General data		
Fail-safe element:	backup fuse for ESX10-T not required because of the integral redundant fail-safe element	
Terminals	LINE+ / LOAD+ / OV	
screw terminals max. cable cross sectio flexible with wire end fer wire stripping length tightening torque (EN 60 multi-lead connection (2 identical cables) rigid/flexible flexible with wire end fer flexible with TWIN wire	w/wo plastic sleeve 34) e without plastic sleeve d ferrule with plastic sle	$\begin{array}{r} \mathrm{M} 4 \\ 0.5-10 \mathrm{~mm}^{2} \\ 10 \mathrm{~mm}^{2} \\ 1.5-1.8 \mathrm{Nm} \\ \\ 0.5-4 \mathrm{~mm}^{2} \\ 0.5-2,5 \mathrm{~mm}^{2} \\ \mathrm{e} 0.5-6 \mathrm{~mm}^{2} \end{array}$
Terminals	aux. contacts	
screw terminals max. cable cross sectio flexible with wire end fer wire stripping length tightening torque (EN 60	M3 w/wo plastic sleeve $0.25-2.5 \mathrm{~mm}^{2}$ 8 mm 4) $0.5-0.6 \mathrm{Nm}$	
Housing material	moulded	
Mounting	symmetrical rail to EN 50022-35x7.5	
Ambient temperature	$-25 \ldots+50^{\circ} \mathrm{C}$ (without condensation, see EN 60204-1)	
Storage temperature	$-40 \ldots+70{ }^{\circ} \mathrm{C}$	
Humidity	$96 \mathrm{hrs} / 95$ \% RH/40 ${ }^{\circ} \mathrm{C}$ to IEC 60068-2-78, test Cab. climate class 3K3 to EN 60721	
Vibration	3 g , test to IEC 60068-2-6 test Fc	
Degree of protection	housing: IP20 EN 60529 terminals: IP20 EN 60529	
EMC (EMC directive, CE logo)	emission: EN 61000-6-3 susceptibility: EN 61000-6-2	
Insulation co-ordination (IEC 60934)	$0.5 \mathrm{kV} / 2$ pollution degree 2 re-inforced insulation in operating area	
dielectric strength	max. DC 32 V (load circuit)	
Insulation resistance (OFF condition)	n / a, only electronic disconnection	
Approvals (ESX10-TA/-TB/-TD)	CE-logo UL 2367, File \# E306740, Solid State Overcurrent Protectors UL 508, File \# E322549	
Approvals (ESX10-TA/-TB)	UL 1604, File \# E320024 (class I, division 2, groups A, B, C, D) CSA C22.2 No: 14, File \# 16186 CSA C22.2 No: 142, File \# 16186 CSA C22.2 No: 213 (class I, division 2)	
Dimensions (W \times H x D $)$	$12.5 \times 80 \times 83 \mathrm{~mm}$	
Mass	approx. 65 g	

E-T•A゚ Electronic Circuit Protector ESX10-T.-DC 24 V

Ordering configuration for ATEX versions: ...-E

Type No.
ESX10 Electronic Circuit Protector, with current limitation
Mounting and design
TA rail mounting, without signal contact
TB rail mounting, with signal contact and slot
for busbars and jumpers
Version
1 standard, without physical isolation
Signal input
0 without signal input
1 with control input IN+
2 with reset input RE,

Signal outputs	
0 without signal output 1 signal contact N/O.	

1 signal contact N/O
2 signal contact N/C
4 status output SF
7 inverse status output SF
Operating voltage
DC 24 V rated voltage DC 24 V
Current rating
0.5 ... 12 A

Approvals
E ATEX
ESX10-TB-1 0 1- DC 24 V - $6 \mathrm{~A}-\mathrm{E}$ Ordering information

Table 1: voltage drop, current limitation, max. load current

current rating I_{N}	typically voltage drop $U_{O N}$ at I_{N}	active current limitation ILimit (typically)	max. load current at 100% ON duty	
			$\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C}$
0.5 A	70 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	0.5 A	0.5 A
1 A	80 mV	$1.8 \times \mathrm{IN}_{\mathrm{N}}$	1 A	1 A
2 A	130 mV	$1.8 \times \mathrm{IN}$	2 A	2 A
3 A	80 mV	$1.8 \times \mathrm{IN}_{\mathrm{N}}$	3 A	3 A
4 A	100 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	4 A	4 A
6 A	130 mV	$1.8 \times \mathrm{I}_{\mathrm{N}}$	6 A	5 A
8 A	120 mV	$1.5 \times 1 \mathrm{~N}$	8 A	7 A
10 A	150 mV	$1.5 \times \mathrm{I}_{\mathrm{N}}$	10 A	9 A
12 A	180 mV	$1.3 \times \mathrm{I}_{\mathrm{N}}$	12 A	10,8 A
[0.5/1/2 A]	70/80/130 mV	$1.4 \times \mathrm{IN}_{\mathrm{N}}$	0.5/1/2 A	0.5/1/2 A
[2/3/4 A]	130/80/100 mV	$1.4 \times \mathrm{IN}_{\mathrm{N}}$	2/3/4 A	2/3/4 A
[2/4/6 A]	130/100/130 mV	$1.4 \times \mathrm{IN}_{\mathrm{N}}$	2/4/6 A	2/4/5 A
[6/8/10 A]	130/120/150 mV	$1.4 \times \mathrm{IN}_{\mathrm{N}}$	6/8/10 A	5/7/9 A

Attention:

when mounted side-by-side without convection the ESX10-T should not carry more than 80% of its rated load with 100% ON duty due to thermal effects.

Ordering information

Type No.
ESX10 Electronic Circuit Protector, with current limitation
Mounting and design
TA rail mounting, without signal contact
TB rail mounting, with signal contact and slot for busbars and jumpers
TD rail mounting, with signal contact and switch for 3 -step current rating adjustment
Version
1 standard, without physical isolation in the event of a failure
Signal input
0 without signal input
1 with control input IN+, only ESX10-T-114
$2 \quad$ with reset input RE, only ESX10-T-124, ESX10-T-127
Signal outputs
$0 \quad$ without signal output (only ESX10-TA)
1 signal contact N/O
2 signal contact N/C
4 status output SF
(only ESX10-T-114, ESX10-T-124
7 inverse status output SF
(only ESX10-T-127
Operating voltage
DC 24 V rated voltage DC 24 V
Current rating
0.5 A

1 A
2 A
3 A
6 A
8 A
10 A
16 A (only ESX10-TB-101)
$0.5 / 1 / 2 \mathrm{~A}$ adjustable (only ESX10-TD-...-X278)
2/4/6 A adjustable (only ESX10-TD-...-X279)
6/8/10 A adjustable (only ESX10-TD-...-X280)
2/3/4 A adjustable (only ESX10-TD-101-...-X282)
ESX10-TA 1000 - DC 24V-6A ordering example

Attention!

Please see separate data sheet for ESX10-TB-101-DC 24 V-16 A.
Description of ESX10-T signal inputs and outputs see wiring diagrams.

Notes

- The user should ensure that the cable cross sections of the relevant load circuit are suitable for the current rating of the ESX10-T used.
- Automatic start-up of machinery after shut down must be prevented (Machinery Directive 98/37/EG and EN 60204-1). In the event of a short circuit or overload the load circuit will be disconnected electronically by the ESX10-T.

Preferred types

Preferred types	Standard current ratings (A)											
ESX10-TA/TB	0.5	1	2	3	4	6	8	10	12	0.5/1/2	2/4/6	6/8/10
ESX10-TA-100-DC24V-	\times	\times	\times	x	\times	\times	\times	\times	\times			
ESX10-TB-101-DC24V-	\times											
ESX10-TD	0.5	1	2	3	4	6	8	10	12	0.5 / 1/2	2/4/6	6/8/10
ESX10-TD-101-DC24V-										\times	\times	\times

E-T®A Electronic Circuit Protector ESX10-T.-DC 24 V

Table 2: ESX10-T - product version

Version		Signal input			Signal output					
					Signal output F (Signal contact)			Status output SF		
ESX10-..		without	Control input ON/OFF +24 V Control IN+	Reset input +24 V \downarrow RE	without	single signal N/O (normally open NO)	single signa N/C (normally closed NC)	without	Status OUT $+24 \mathrm{~V}=\mathrm{OK}$	Status OUT $0 \mathrm{~V}=\mathrm{OK}$
-TA	-100	x			x			x		
-TB/-TD	-101	x				x		x		
-TB/-TD	-102	x					x	x		
-TB/-TD	-114		x						x	
-TB/-TD	-124			x	x				x	
-TB/-TD	-127			x	x					x

Terminal wiring diagram ESX10-TB-124 (Example)

Schematic diagram ESX10-TB-124 (Example)

Approvals

ESX10-TA/-TB and -TD			
Authority	Standard	Voltage rating	Current ratings
UL	UL 2367	DC 24 V	0.5 A... 16 A
UL	UL 1604	DC 24 V	0.5 A... 12 A
UL	$\begin{aligned} & \text { UL } 508 \\ & \text { C22.2 No } 14 \end{aligned}$	DC 24 V	0.5 A... 16 A
GL	Rules VI, part 7, GL 2012, category C, EMC1	DC 24 V	0.5 A... 12 A
ESX10-TA and -TB			
Authority	Standard	Voltage rating	Current ratings
CSA	C22.2 No 14 C22.2 No 142M C22.2 No 213-M	DC 24 V	0.5... 12 A
TÜV	ATEX 94/9/EC Annex VIII EN 60079-0 EN 60079-11 EN 60079-15	DC 24 V	

EG-declaration of Conformity for ATEX-version ESX10-TA/-TB-...-E

(E Cos
E-T-A Elektrotechnische Apparate GmbH

[^0]
E.TVA Electronic Circuit Protector ESX10-T.-DC 24 V

Dimensions ESX10-TA

Dimensions ESX10-TB

Dimensions ESX10-TD

Information on UL approvals/CSA approvals

只

ESX10-TA/-TB
UL1604
UL File \# E320024
Operating Temperature Code T5

- This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only

WARNING:

- Exposure to some chemicals may degrade the sealing properties of materials used in the following device: relay Sealant Material:

Generic Name: Modified diglycidyl ether of bisphenol A
Supplier: Fine Polymers Corporation
Type:
Epi Fine 4616L-160PK
Casing Material:
Generic Name: Liquid Crystal Polymer
Supplier: Sumitomo Chemical
Type: E4008, E4009, or E6008
RECOMMENDATION:

- Periodically inspect the device named above for any degradation of properties and replace if degradation is found

WARNING - EXPLOSION HAZARD:

- Do not disconnect equipment unless power has been removed or the area is known to be non-hazardous
- Substitution of any components may impair suitability for Class I, Division 2

只
ESX10-TA/-TB/-TD
UL2367
Non-hazardous use - UL File \# E306740
© UL us
ESX10-TA/-TB/-TD
UL 508
Non-hazardous use - UL File \# E322549
ESX10-TA/-TB
CSA C22.2 No: 14 - File \# 16186
CSA C22.2 No: 142 - File \# 16186
CSA C22.2 No: 213 (Class I, Division 2) File \# 16186

Class 2
Meets requirement for Class 2 current limitation
(ESX10-T...-0,5 A/1 A/2 A/3 A)

Instruction leaflet

Electronic Circuit Protector

CSA File \# \# E320024 166
This device is suitable for use in Class I, Div 2, Groups A, B, C, D;
TC T5; Hazardous locations or nonhazardous locations only
Warnings:

1. Remove power before disconnecting device
or the area is known to be nonhazardous
mponents substitutions may impair suitability of Class I, Div 2.

Refer to data sheet / installation guidelines for installation and safety instructions.

ESX10-T Signal inputs / outputs (wiring diagram)

ESX10-T signal inputs / outputs (schematic diagrams)
Auxiliary contacts are shown in OFF or error condition

ESX10-TA-100
without signal input/output

ESX10-TB-114
with control input IN+ (+DC 24 V)
with status output SF
(+24 V = load output ON)

operating condition: $\mathrm{SF}+24 \mathrm{~V}=\mathrm{OK}$ fault condition: SF 0 V

ESX10-TB-101
without signal input with signal output F (single signal, N/O)

operating condition: 13-14 closed fault condition: 13-14 open

ESX10-TB-124
with reset input RE
(+DC $24 \mathrm{~V} \downarrow$)
with status output SF
(+24 V = load output ON)

operating condition: SF $+24 \mathrm{~V}=\mathrm{OK}$ fault condition:

ESX10-TB-102
without signal input
with signal output F
(single signal, N / C)

operating condition: 11-12 open fault condition: 11-12 closed

ESX10-TB-127
with reset input RE
(+DC 24 V \downarrow)
with inverse status output SF
($0 \mathrm{~V}=$ load output ON)

operating condition: SF $0 \mathrm{~V}=\mathrm{OK}$ fault condition: $\quad \mathrm{SF}+24 \mathrm{~V}$

ESX10-TD

Schematic diagram similar to ESX10-TB, without signal busbars (on top)

Time/Current characteristic curve $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

- The trip time is typically 3 s in the range between 1.1 and $1.8 \times \mathrm{I}_{\mathrm{N}}$ (e.g. ESX10-TB-...-6 A)
- Electronic current limitation $I_{\text {Limit }}$ occurs at typically $1.8 \times I_{N}$ which means that under all overload conditions (independent of the power supply and the resistance of the load circuit) the max. overload before disconnection will not exceed $1.8 \times \mathrm{I}_{\mathrm{N}}$ times the current rating. The individual current limitation value $\mathrm{L}_{\text {Limit }}$ depends on the current rating (see table1). Trip time is between 100 ms and 3 sec (depending on overload or at short circuit).
- Without this current limitation a considerably higher overload current would flow in the event of an overload or short circuit.

Table 3: Reliable trip of ESX10-T

Reliable trip of ESX10 with different cable lengths and cross sections							
Resistivity of copper $\rho_{0}=0.0178\left(0 \mathrm{hm} \times \mathrm{mm}^{2}\right) / \mathrm{m}$							
$\mathrm{U}_{\mathbf{S}}=\mathbf{D C} 19.2 \mathrm{~V}(=80 \%$ of 24 V$)$	voltage drop of ESX10-T and tolerance of trip point (typically $1.1 \times I_{N}=1.05 \ldots 1.35 \times I_{N}$) have been taken into account.						
ESX10-T-selected rating $\mathrm{I}_{\mathrm{N}}($ in A$) \rightarrow$ e. g. trip current $\mathrm{I}_{\mathrm{ab}}=1.25 \times \mathrm{I}_{\mathrm{N}}($ in A$\left.)\right) \rightarrow$ $\mathrm{R}_{\text {max }}$ in Ohm $=\left(\mathrm{U}_{\mathrm{S}} / \mathrm{I}_{\mathrm{ab}}\right)-0.050 \rightarrow$	3	6					
	3.75	7.5	\rightarrow ES	trips	s		
	5.07	2.51					
The ESX10-T reliably trips from 0 Ohm to max. circuitry resistance $\mathbf{R}_{\text {max }}$							
Cable cross section \mathbf{A} in $\mathrm{mm}^{2} \rightarrow$	0.14	0.25	0.34	0.5	0.75	1	1.5
cable length \mathbf{L} in meter (= single length)	cable resistance in Ohm = ($\left.\mathrm{R}_{0} \times 2 \times \mathrm{L}\right) / \mathrm{A}$						
5	1.27	0.71	0.52	0.36	0.24	0.18	0.12
10	2.54	1.42	1.05	0.71	0.47	0.36	0.24
15	3.81	2.14	1.57	1.07	0.71	0.53	0.36
20	5.09	2.85	2.09	1.42	0.95	0.71	0.47
25	6.36	3.56	2.62	1.78	1.19	0.89	0.59
30	7.63	4.27	3.14	2.14	1.42	1.07	0.71
35	8.90	4.98	3.66	2.49	1.66	1.25	0.83
40	10.17	5.70	4.19	2.85	1.90	1.42	0.95
45	11.44	6.41	4.71	3.20	2.14	1.60	1.07
50	12.71	7.12	5.24	3.56	2.37	1.78	1.19
75	19.07	10.68	7.85	5.34	3.56	2.67	1.78
100	25.34	14.24	10.47	7.12	4.75	3.56	2.37
125	31.79	17.80	13.09	8.90	5.93	4.45	2.97
150	38.14	21.36	15.71	10.68	7.12	5.34	3.56
175	44.50	24.92	18.32	12.46	8.31	6.23	4.15
200	50.86	28.48	20.94	14.24	9.49	7.12	4.75
225	57.21	32.04	23.56	16.02	10.68	8.01	5.34
250	63.57	35.60	26.18	17.80	11.87	8.90	5.93
Example 1:	max. length at $1.5 \mathrm{~mm}^{2}$ and $3 \mathrm{~A} \rightarrow 214 \mathrm{~m}$						
Example 2:	max. length at $1.5 \mathrm{~mm}^{2}$ and $6 \mathrm{~A} \boldsymbol{\rightarrow} \mathbf{1 0 6 ~ m}$						
Example 3:	mixed wiring: $\mathrm{R} 1=40 \mathrm{~m}$ in $1.5 \mathrm{~mm}^{2}$ and $\mathrm{R} 2=5 \mathrm{~m}$ in $0.25 \mathrm{~mm}^{2}$: (Control cabinet - sensor/actuator level) R1 $=0.95$ Ohm, R2 $=0.71$ Ohm Total (R1 + R2) = 1.66 Ohm						

Mounting examples for ESX10-T

The ESX10-T features an integral power distribution system.

Mounting procedure:

Before wiring insert busbars into protector block.
Max. 10 insertion/removal cycles for busbars.

Recommendation:

After 10 units the busbars and signal busbars should be interrupted and receive a new entry live
Table of lengths for busbars
(X 22261102 / X 22200503 or cut off, see accessories)

No. of units	2	3	4	5	6	7	8	9	10
Length of busbar $[\mathrm{mm}] \pm 0.5 \mathrm{~mm}$	22	34.5	47	59.5	72	84.5	97	109.5	122

Connection diagrams and application examples ESX10-T

Connection diagrams and application examples ESX10-T...

Signal contacts are shown in OFF or fault condition.

ESX10-TA-100

ESX10-TB-101
group signalling (series connection)

Connection diagrams and application examples ESX10-T

ESX10-TB-102

Single signalling with common line entry

ESX10-TB-124

Single signalling with common reset

Connection diagrams and application examples ESX10-T

Applications examples: line entry DC 24 V with

 protection of signal circuit and direct connection of loadsAuxiliary contacts are shown on the OFF of fault condition

ESX10-TB-101

Group signalisation (series connection)
Type ESX10-TA-100-DC24V-0.5A can be used as a supply module including protection of auxiliary circuit Optional: passive supply module AD-TX-EM01 (without protection)

ESX10-TB-102

Single signalisation with common line entry
Type ESX10-TA-100-DC24V-0.5A can be used as a supply module
including protection of auxiliary circuit
Optional: passive supply module AD-TX-EM01 (without protection)

Description

The ESX10-T features an integral power distribution system. The following wiring modes are possible with various pluggable current and signal busbars:

- LINE +(DC 24 V)
- 0 V

Caution: The electronic devices ESX10-T require a
0 V connection

- signal contacts
- reset inputs

Accessories

Busbars for LINE+ and 0 V
max. load with one line entry (recommended: centre line entry) max. load with two line entries grey insulation, length: 500 mm
X 22261102

Busbars for LINE+ and 0 V

grey insulation
max. number of plug-on operations 10:
X 22261122 (2-unit-block ESX10-T), length: 22 mm
X 222611 34, (3-unit-block ESX10-T), length: 34.5 mm
X 222611 47, (4-unit-block ESX10-T), length: 47 mm
X 222611 59, (5-unit-block ESX10-T), length: 59.5 mm packing unit: 10 pcs

X 222611 97, (8-unit-block ESX10-T), length: 97 mm X 222611 12, (10-unit-block ESX10-T), length: 122 mm packing unit: 4 pcs

Signal busbars for signal contacts and reset inputs suitable for signal busbar ESX10-TB-...
max. load with one line entry
with one series connection of signal contacts $I_{\max }$ grey insulation, length: 500 mm X 22200503

Jumpers for signal contacts

suitable for jumper ESX10-TB-...
grey insulation, length: 21 mm

X 22200513

packing unit: 10 pcs

Insulated wire bridge

optional as jumper for ESX10-TB-101.../ESX10-TD-101...
for group signalisation (series connection)
X 22310801
packing unit: 10 pcs

Connector bus link -K10
suitable for auxiliary contacts (series connection)
X 21058902 ($1.5 \mathrm{~mm}^{2}$, brown),

Accessories

Passive supply module for LINE+ and 0 V

 (without protection)

 (without protection)}optional for all ESX10-T... versions in the event of loads to be connected directly to all ESX10-Ts.

```
ampacity
Imax }50\textrm{A
max. cross section 0,5-10 mm2
```

Technical data
see terminals ESX10-T

AD-TX-EM01

[^0]: 0-90518 Altdorfibe i Nürnberg • Germany \bullet Telephone +49 9187/ $10-0 \cdot$ Facsimile $+499187 / 10-398$

